Ir al contenido

Documat


On the range of semigroup valued measures

  • Autores: Pedro Jiménez Guerra Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 35, Fasc. 1, 1984, págs. 71-83
  • Idioma: inglés
  • Títulos paralelos:
    • Rango de medidas con valores en un semigrupo
  • Enlaces
  • Resumen
    • It is proved that every measure with values in a topological semigroup, whose topology is defined by a family of semi-invariant in zero pseudometrics, is bounded (in some sence) i fit is $s$-bounded or it is $\sigma$-additive and the pseudometrics are invariant in zero, in the second casi it also proved that the range of the mesaure is conditionally compact. Moreover it is stated that the range of a $\sigma$-additive measure with values in a topological semigroup (of the last type) is compact if the measure is purely atomic and of bounded variation. Some results about the uniform boundness of a sequence of semigroup valued measures and group, are proved.\newline\newline AMS (MOS) Subject classification$\cdots$ 28B10


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno