Ir al contenido

Documat


Algunas aplicaciones de la Teoría de Lie a la Economía y las Finanzas

  • Autores: Isabel Hernández Fernández, Consuelo Mateos Contreras, Juan Núñez-Valdés Árbol académico, Ángel Francisco Tenorio Villalón Árbol académico
  • Localización: Revista de métodos cuantitativos para la economía y la empresa, ISSN-e 1886-516X, Vol. 6, 2008, págs. 74-94
  • Idioma: español
  • Títulos paralelos:
    • Some Applications of Lie Theory to Economics and Finance
  • Enlaces
  • Resumen
    • español

      En este artículo, los autores pretenden mostrar y explicar cómo la Teoría de Lie se puede aplicar a la resolución de algunos problemas relativos a la Economía y a las Finanzas. Concretamente, se realiza un análisis de dos de esos problemas y se discuten tanto sus aspectos matemáticos como el acercamiento hecho desde la Teoría de Lie para su resolución. Igualmente, se indican los avances más recientes existentes en esta línea de investigación, mencionando también algunos problemas abiertos que pueden ser tratados en futuros trabajos

    • English

      This paper shows and explains two problems in Economics and Finance, both dealt with a Lie Theory approach. So, mathematical aspects for these approaches are put forward and discussed in several economic problems which have been previously considered in the literature. Besides, some ad- vances on this topic are also shown, mentioning some open problems for future research.

  • Referencias bibliográficas
    • M. Armstrong (1996): Multiproduct Nonlinear Pricing. Econometrica 64, pp. 51-75.
    • S. Basov (2004): Lie groups of partial differential equations and their application to the multidimensional screening problems. Econometric...
    • T. Björk (2001): A geometric view of interest rate theory. En: E. Jouni, J. Cvitanic and M. Musuela (eds.): Option pricing, Interest Rates...
    • T. Björk (2004): On the Geometry of Interest Rate Models. En: R.A. Carmona, E.C. Çinlar, I. Ekeland, E. Jouini, J. A. Scheinkman and N. Touzi...
    • T. Björk and C. Landén (2002): On the construction of finite dimensional realizations for nonlinear forward rate models. Fin. Stoch. 6, pp....
    • J. Cox (1975): Notes on Option Pricing I: Constant Elasticity of Variance Diffusions. Working Paper, Stanford University.
    • J.C. Cox and S.A. Ross (1976): The Valuation of Options for Alternative Stochastic Processes. Journal of Financial Economics 3, pp. 145-166.
    • A. De Sanctis (2007): Lie Theory to Value Financial Derivatives with Time Dependent Parameters. Int. Math. Forum 2:10, pp. 499-503.
    • L.P. Eisenhart (1933): Continuous groups of transformations, Princeton University Press. E.M. Fedriani y Á.F. Tenorio (2006): Progreso técnico:...
    • A. Friedman (1964): Partial Differential Equations of Parabolic Type, Prentice-Hall.
    • R.M. Gaspar (2006): Finite Dimensional Markovian Realizations for Forward Price Term Structure Models. En: A.N. Shiryaev, M.R. Grossinho,...
    • I. Hernández, C. Mateos, J. Núñez and A.F. Tenorio (2008): Lie Theory: Applications to Problems in Mathematical Finance and Economics. Applied...
    • I. Karatsas and S. Shreve (1997): Brownian Motion and Stochastic Calculus, Springer-Verlag.
    • C.F. Lo, C.H. Hui and P.H. Yuen (2000a): Constant elasticity of variance option pricing model with time-dependent parameters. Int. J. Theor....
    • C.F. Lo, C.H. Hui and P.H. Yuen (2000b): Option risk measurement with time-dependent parameters. Int. J. Theor. Appl. Fin. 3:3, pp. 581-589.
    • C.F. Lo and C.H. Hui (2001): Valuation of financial derivatives with time-dependent parameters. Quantitative Finance 1, pp. 73-78.
    • C.F. Lo and C.H. Lui (2002): Pricing multi-asset financial derivatives with time-dependent parameters-Lie algebraic approach. Int. J. Math....
    • C.F. Lo and C.H. Lui (2006): Lie algebraic approach for pricing moving barrier options with time-dependent parameters, J. Math. Ann. Appl....
    • R. Lu and Y.-H. Hsu (2005): Valuation of Standard Options under the Constant Elasticity of Variance Model, Int. J. Bus. Econ. 4:2, pp. 157-165.
    • T.M. Mitchell (1987): Toward empirical applications of Lie-group technical progress functions, Economics Letters 25, pp. 111-116.
    • S. Polidoro (2003): A Nonlinear PDE in Mathematical Finance. En: F. Brezzi, A. Buffa, S. Corsaro and A. Murli (eds.): Numerical Mathematics...
    • R. Sato (1980): The impact of technical change on the holotheticity of production functions. Economic Studies 47, pp. 767-776.
    • R. Sato (1981): Theory of technical change and economic invariance. Application of Lie groups, Academic Press.
    • R. Sato and R.V. Ramachandran (1998): Symmetry and Economic Invariance: an introduction, Kluwer.
    • R.M. Solow (1961): Comment on Stigler. En: Output, Input and Productivity Measurement, Princeton University Press, pp. 64-68.
    • G.J. Stigler (1961): Economic problems in measuring changes in productivity. En: Output, Input and Productivity Measurement, Princeton University...
    • J. Wei and E. Norman (1963): Lie algebraic solution of linear differential equations. Journal of Mathematical Physics 4, pp. 575-581.
    • R. Wilson (1993): Non Linear Pricing, Oxford University Press.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno