We show that if a separable Banach space Z contains isometric copies of every strictly convex separable Banach space, then Z actually contains an isometric copy of every separable Banach space. We prove that if Y is any separable Banach space of dimension at least 2, then the collection of separable Banach spaces which contain an isometric copy of Y is analytic non Borel.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados