Ir al contenido

Documat


Continuous multilinear operators on C(K) spaces and polymeasures

  • Autores: Fernando Bombal Gordón Árbol académico
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 22, Nº 2, 2007 (Ejemplar dedicado a: Banach space theory: classical topics and new directions. Cáceres 2006), págs. 127-146
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Every continuous k-linear operator from a product C(K1) × · · · × C(Kk) into a Banach space X (Ki being compact Hausdorff spaces) admits a Riesz type integral representation T(f1, . . . , fk) := Z (f1, . . . , fk) d, where is the representing polymeasure of T, i.e., a set function defined on the product of the Borel -algebras Bo(Ki) with values in X which is separately finitely additive. As in the linear case, the interplay between T and its representing polymeasure plays an important role. The aim of this paper is to survey some features of this relationship.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno