Ir al contenido

Documat


Uniqueness of invariant Hahn-Banach extensions

  • Autores: Pradipta Bandyopadhyay, Ashoke K. Roy
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 22, Nº 2, 2007 (Ejemplar dedicado a: Banach space theory: classical topics and new directions. Cáceres 2006), págs. 93-114
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let ` be a linear functional on a subspace Y of a real linear space X provided with a sublinear functional p with `  p on Y . If G is an abelian semigroup of linear transformations T : X ! X such that T(Y )  Y , p(Tx)  p(x) and `(Ty) = `(y) for all T 2 G, x 2 X and y 2 Y respectively, then a generalization of the classical Hahn-Banach theorem asserts that there exists an extension e` of `, e`  p on X and e` remains invariant under G. The present paper investigates various equivalent conditions for the uniqueness of such extensions and these are related to nested sequences of p-balls, a concept that has proved useful in recent years in dealing with such extensions. The results are illustrated by a variety of examples and applications.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno