Ir al contenido

Documat


Giant component and vacant set for random walk on a discrete torus

  • Autores: Itai Benjamini, Alain-Sol Sznitman
  • Localización: Journal of the European Mathematical Society, ISSN 1435-9855, Vol. 10, Nº 1, 2008, págs. 133-172
  • Idioma: inglés
  • DOI: 10.4171/jems/106
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider random walk on a discrete torus $E$ of side-length $N$, in sufficiently high dimension $d$. We investigate the percolative properties of the vacant set corresponding to the collection of sites which have not been visited by the walk up to time $uN^d$. We show that when $u$ is chosen small, as $N$ tends to infinity, there is with overwhelming probability a unique connected component in the vacant set which contains segments of length const $\log N$. Moreover, this connected component occupies a non-degenerate fraction of the total number of sites $N^d$ of $E$, and any point of $E$ lies within distance $N^\beta$ of this component, with $\beta$ an arbitrary positive number.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno