Ir al contenido

Documat


Resumen de Hölder inequality for functions that are integrable with respect to bilinear maps

Óscar Blasco de la Cruz Árbol académico, José Manuel Calabuig Rodríguez Árbol académico

  • Let (Ω,Σ,μ) be a finite measure space, 1≤p<∞, X be a Banach space X and B:X×Y→Z be a bounded bilinear map. We say that an X-valued function f is p-integrable with respect to B whenever sup∥y∥=1∫Ω∥B(f(w),y)∥pdμ<∞. We get an analogue to Hölder's inequality in this setting.


Fundación Dialnet

Mi Documat