Ir al contenido

Documat


On a nilpotent Lie superalgebra which generalizes Qn

  • Autores: José María Ancochea Bermúdez Árbol académico, Otto Rutwig Campoamor Árbol académico
  • Localización: Revista matemática complutense, ISSN-e 1988-2807, ISSN 1139-1138, Vol. 15, Nº 1, 2002, págs. 131-146
  • Idioma: inglés
  • DOI: 10.5209/rev_rema.2002.v15.n1.16953
  • Enlaces
  • Resumen
    • In [6] and [7] the author introduces the notion of filiform Lie superalgebras, generalizing the filiform Lie algebras studied by Vergne in the sixties. In these appers, the superalgebras whose even part is isomorphic to the model filiform Lie algebra Ln are studied and classified in low dimensions. Here we consider a class of superalgebras whose even part is the filiform, naturally graded Lie algebra Qn, which only exists in even dimension as a consequence of the centralizer property. Certain central extensions of Qn which preserve both the nilindex and the cited property are also generalized to obtain nonfiliform Lie superalgebras


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno