Ir al contenido

Documat


Special units and ideal class groups of extensions of imaginary quadratic fields

  • Autores: Byungchul Cha
  • Localización: Mathematical proceedings of the Cambridge Philosophical Society, ISSN 0305-0041, Vol. 143, Nº 2, 2007, págs. 265-270
  • Idioma: inglés
  • DOI: 10.1017/s030500410700014x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let K be an imaginary quadratic field, and let F be an abelian extension of K, containing the Hilbert class field of K. We fix a rational prime p > 2 which does not divide the number of roots of unity in the Hilbert class field of K. Also, we assume that the prime p does not divide the order of the Galois group G:=Gal(F/K). Let AF be the ideal class group of F, and EF be the group of global units of F. The purpose of this paper is to study the Galois module structures of AF and EF.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno