Let be the Bernoulli measure on the Cantor space given as the infinite product of two-point measures with weights and . It is a long-standing open problem to characterize those and such that and are topologically equivalent (i.e., there is a homeomorphism from the Cantor space to itself sending to ). The (possibly) weaker property of and being continuously reducible to each other is equivalent to a property of and called binomial equivalence. In this paper we define an algebraic property called ``refinability'' and show that, if and are refinable and binomially equivalent, then and are topologically equivalent. Next we show that refinability is equivalent to a fairly simple algebraic property. Finally, we give a class of examples of binomially equivalent and refinable numbers; in particular, the positive numbers and such that and are refinable, so the corresponding measures are topologically equivalent.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados