Ir al contenido

Documat


Big Cohen-Macaulay algebras and seeds

  • Autores: Geoffrey D. Dietz
  • Localización: Transactions of the American Mathematical Society, ISSN 0002-9947, Vol. 359, Nº 12, 2007, págs. 5959-5989
  • Idioma: inglés
  • DOI: 10.1090/s0002-9947-07-04252-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this article, we delve into the properties possessed by algebras, which we have termed seeds, that map to big Cohen-Macaulay algebras. We will show that over a complete local domain of positive characteristic any two big Cohen-Macaulay algebras map to a common big Cohen-Macaulay algebra. We will also strengthen Hochster and Huneke's ``weakly functorial" existence result for big Cohen-Macaulay algebras by showing that the seed property is stable under base change between complete local domains of positive characteristic. We also show that every seed over a positive characteristic ring maps to a balanced big Cohen-Macaulay -algebra that is an absolutely integrally closed, -adically separated, quasilocal domain.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno