We show that there exists a minimal (Turing) degree such that for all non-zero c.e. degrees , . Since is minimal this means that complements all c.e. degrees other than and . Since every -c.e. degree bounds a non-zero c.e. degree, complements every -c.e. degree other than and .
© 2008-2024 Fundación Dialnet · Todos los derechos reservados