Using an abstract result on Riesz basis generation for discrete operators in general Hilbert spaces, we show, in this article, that the generalized eigenfunctions of an Euler-Bernoulli beam equation with joint linear feedback control form a Riesz basis for the state space. The spectrum-determined growth condition is hence obtained. Meanwhile, the exponential stability as well as the asymptotic expansion of eigenvalues are also readily obtained by a straightforward computation.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados