Ir al contenido

Documat


A C*-analogue of Kazhdan's property (T)

  • Autores: A. A. Pavlov
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 216, Nº 1, 2007, págs. 75-88
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper deals with a ¿naive¿ way of generalizing Kazhdan's property (T) to C*-algebras. Our approach differs from the approach of Connes and Jones, which has already demonstrated its utility. Nevertheless, it turns out that our approach is applicable to a rather subtle question in the theory of C*-Hilbert modules. Namely, we prove that a separable unital C*-algebra A has property MI (module infinite¿i.e. any countably generated self-dual Hilbert module over A is finitely generated and projective) if and only if A does not satisfy our definition of property (T). The commutative case was studied in an earlier paper.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno