David Ploog
The familiar Fourier¿Mukai technique can be extended to an equivariant setting where a finite group G acts on a smooth projective variety X. In this paper we compare the group of invariant autoequivalences Aut(Db(X))G with the group of autoequivalences of DG(X). We apply this method in three cases: Hilbert schemes on K3 surfaces, Kummer surfaces and canonical quotients.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados