Ir al contenido

Documat


Resumen de A Cramer-Rao analogue for median-unbiased estimators

N. K. Sung, Gabriela Stangenhaus, Herbert T. David

  • Adopting a measure of dispersion proposed by Alamo [1964], and extending the analysis in Stangenhaus [1977] and Stangenhaus and David [1978b], an analogue of the classical Cramér-Rao lower bound for median-unbiased estimators is developed for absolutely continuous distributions with a single parameter, in which mean-unbiasedness, the Fisher information, and the variance are replaced by median-unbiasedness, the first absolute moment of the sample score, and the reciprocal of twice the median-unbiased estimator's density height evaluated at its median point. We exhibit location-parameter and scale-parameter families for which there exist median-unbiased estimators meeting the bound. We also give an analogue of the Chapman-Robbins inequality which is free from regularity conditions


Fundación Dialnet

Mi Documat