Ir al contenido

Documat


Privacy homomorphisms for statistical confidentiality

  • Autores: Josep Domingo i Ferrer Árbol académico
  • Localización: Questiió: Quaderns d'Estadística, Sistemes, Informatica i Investigació Operativa, ISSN 0210-8054, Vol. 20, Nº. 3, 1996, págs. 505-525
  • Idioma: inglés
  • Títulos paralelos:
    • Homomorfismos de privacidad para la confidencialidad estadística
  • Enlaces
  • Resumen
    • When publishing contingency tables which contain official statistics, a need to preserve statistical confidentiality arises. Statistical disclosure of individual units must be prevented. There is a wide choice of techniques to achieve this anonymization: cell supression, cell perturbation, etc. In this paper, we tackle the problem of using anonymized data to compute exact statistics; our approach is based on privacy homomorphisms, which are encryption transformations such that the decryption of a function of cyphers is a (possibly different) function of the corresponding clear messages. A new privacy homomorphism is presented and combined with some anonymization techniques, in order for a classified level to retrieve exact statistics from statistics computed on disclosure-protected data at an unclassified level


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno