Ir al contenido

Documat


The Caporaso-Harris formula and plane relative Gromov-Witten invariants in tropical geometry

  • Autores: Andreas Gathmann, Hannah Markwig
  • Localización: Mathematische Annalen, ISSN 0025-5831, Vol. 338, Nº. 4, 2007, págs. 845-868
  • Idioma: inglés
  • DOI: 10.1007/s00208-007-0092-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Some years ago Caporaso and Harris have found a nice way to compute the numbers N(d, g) of complex plane curves of degree d and genus g through 3d + g - 1 general points with the help of relative Gromov-Witten invariants. Recently, Mikhalkin has found a way to reinterpret the numbers N(d, g) in terms of tropical geometry and to compute them by counting certain lattice paths in integral polytopes. We relate these two results by defining an analogue of the relative Gromov-Witten invariants and rederiving the Caporaso-Harris formula in terms of both tropical geometry and lattice paths.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno