Ir al contenido

Documat


Quantifier elimination for the theory of algebraically closed valued fields with analytic structure

  • Autores: Yalin Firat Çelikler
  • Localización: Mathematical Logic Quarterly, ISSN 0942-5616, Vol. 53, Nº. 3, 2007, págs. 237-246
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The theory of algebraically closed non-Archimedean valued fields is proved to eliminate quantifiers in an analytic language similar to the one used by Cluckers, Lipshitz, and Robinson. The proof makes use of a uniform parameterized normalization theorem which is also proved in this paper. This theorem also has other consequences in the geometry of definable sets. The method of proving quantifier elimination in this paper for an analytic language does not require the algebraic quantifier elimination theorem of Weispfenning, unlike the customary method of proof used in similar earlier analytic quantifier elimination theorems.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno