Ir al contenido

Documat


Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d'homotopie de certains schémas formels

  • Autores: Amaury Thuillier
  • Localización: Manuscripta mathematica, ISSN 0025-2611, Vol. 123, Nº. 4, 2007, págs. 381-451
  • Idioma: francés
  • DOI: 10.1007/s00229-007-0094-2
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • V.G. Berkovich's non-Archimedean analytic geometry provides a natural framework to understand the combinatorial aspects in the theory of toric varieties and toroidal embeddings. This point of view leads to a conceptual and elementary proof of the following results: if X is an algebraic scheme over a perfect field and if D is the exceptional normal crossing divisor of a resolution of the singularities of X, the homotopy type of the incidence complex of D is an invariant of X. This is a generalization of a theorem due to D. Stepanov.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno