We prove that an invariant of closed 3-manifolds, called the block number, which is defined via flow-spines, equals the Heegaard genus, except for S 3 and S 2 × S 1. We also show that the underlying 3-manifold is uniquely determined by a neighborhood of the singularity of a flow-spine. This allows us to encode a closed 3-manifold by a sequence of signed labeled symbols. The behavior of the encoding under the connected sum and a criterion for reducibility are studied.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados