Ir al contenido

Documat


Lower bounds on volumes of hyperbolic Haken 3-manifolds

  • Autores: Ian Agol, Peter A. Storm, William Thurston, Nathan M. Dunfield
  • Localización: Journal of the American Mathematical Society, ISSN 0894-0347, Vol. 20, Nº 4, 2007, págs. 1053-1077
  • Idioma: inglés
  • DOI: 10.1090/s0894-0347-07-00564-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove a volume inequality for 3-manifolds having [C º] metrics ``bent'' along a surface and satisfying certain curvature conditions. The result makes use of Perelman's work on the Ricci flow and geometrization of closed 3-manifolds. Corollaries include a new proof of a conjecture of Bonahon about volumes of convex cores of Kleinian groups, improved volume estimates for certain Haken hyperbolic 3-manifolds, and a lower bound on the minimal volume of orientable hyperbolic 3-manifolds. An appendix compares estimates of volumes of hyperbolic 3-manifolds drilled along a closed embedded geodesic with experimental data.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno