Ir al contenido

Documat


Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation

  • Autores: José Antonio Carrillo Árbol académico, Lucas C. F. Ferreira
  • Localización: Monatshefte für mathematik, ISSN 0026-9255, Vol. 151, Nº 2, 2007, págs. 111-142
  • Idioma: inglés
  • DOI: 10.1007/s00605-007-0447-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We analyze the well-posedness of the initial value problem for the dissipative quasi-geostrophic equations in the subcritical case. Mild solutions are obtained in several spaces with the right homogeneity to allow the existence of self-similar solutions. While the only small self-similar solution in the strong space is the null solution, infinitely many self-similar solutions do exist in weak- spaces and in a recently introduced [7] space of tempered distributions. The asymptotic stability of solutions is obtained in both spaces, and as a consequence, a criterion of self-similarity persistence at large times is obtained.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno