Ir al contenido

Documat


Three-dimensional antipodal and norm-equilateral sets

  • Autores: Achill Schürmann, Konrad J. Swanepoel
  • Localización: Pacific journal of mathematics, ISSN 0030-8730, Vol. 228, Nº 2, 2006, págs. 349-370
  • Idioma: inglés
  • DOI: 10.2140/pjm.2006.228.349
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We characterize three-dimensional spaces admitting at least six or at least seven equidistant points. In particular, we show the existence of C8 norms on R3 admitting six equidistant points, which refutes a conjecture of Lawlor and Morgan (1994, Pacific J. Math. 166, 55¿83), and gives the existence of energy-minimizing cones with six regions for certain uniformly convex norms on R3. On the other hand, no differentiable norm on R3 admits seven equidistant points. A crucial ingredient in the proof is a classification of all three-dimensional antipodal sets. We also apply the results to the touching numbers of several three-dimensional convex bodies.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno