Ir al contenido

Documat


Universal deformation formulae, symplectic Lie groups and symmetric spaces

  • Autores: Pierre Bieliavsky, Philippe Bonneau, Yoshiaki Maeda
  • Localización: Pacific journal of mathematics, ISSN 0030-8730, Vol. 230, Nº 1, 2007, págs. 41-58
  • Idioma: inglés
  • DOI: 10.2140/pjm.2007.230.41
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We define a class of symplectic Lie groups associated with solvable symmetric spaces. We give a universal strict deformation formula for every proper action of such a group on a smooth manifold. We define a functional space where performing an asymptotic expansion of the nonformal deformed product in powers of the deformation parameter yields an associative formal star product on the symplectic Lie group at hand. The cochains of the star product are explicitly given (without recursion) in the two-dimensional case of the afine group ax + b. The latter differs from the Giaquinto¿Zhang construction, as shown by analyzing the invariance groups. In a Hopf algebra context, the above formal star product is shown to be a smash product and a compatible coproduct is constructed.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno