Donatella Danielli, Nicola Garofalo, Arshak Petrosyan
The sub-elliptic obstacle problem arises in various branches of the applied sciences, e.g., in mechanical engineering and robotics, mathematical finance, image reconstruction and neurophysiology. In the recent paper [Donatella Danielli, Nicola Garofalo, Sandro Salsa, Variational inequalities with lack of ellipticity. I. Optimal interior regularity and non-degeneracy of the free boundary, Indiana Univ. Math. J. 52 (2) (2003) 361¿398; MR1976081 (2004c:35424)] it was proved that weak solutions to the sub-elliptic obstacle problem in a Carnot group belong to the Folland¿Stein (optimal) Lipschitz class (the analogue of the well-known interior local regularity for the classical obstacle problem). However, the regularity of the free boundary remained a challenging open problem. In this paper we prove that, in Carnot groups of step r=2, the free boundary is (Euclidean) C1,a near points satisfying a certain thickness condition. This constitutes the sub-elliptic counterpart of a celebrated result due to Caffarelli [Luis A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (3¿4) (1977) 155¿184; MR0454350 (56 #12601)].
© 2008-2024 Fundación Dialnet · Todos los derechos reservados