Ir al contenido

Documat


Link homology theories from symplectic geometry

  • Autores: Ciprian Manolescu
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 211, Nº 1, 2007, págs. 363-416
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2006.09.007
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For each positive integer n, Khovanov and Rozansky constructed an invariant of links in the form of a doubly-graded cohomology theory whose Euler characteristic is the link polynomial. We use Lagrangian Floer cohomology on some suitable affine varieties to build a similar series of link invariants, and we conjecture them to be equal to those of Khovanov and Rozansky after a collapse of the bigrading. Our work is a generalization of that of Seidel and Smith, who treated the case n=2


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno