Ir al contenido

Documat


Brunn¿Minkowski inequalities for contingency tables and integer flows

  • Autores: Alexander Barvinok
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 211, Nº 1, 2007, págs. 105-122
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2006.07.012
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We establish approximate log-concavity for a wide family of combinatorially defined integer-valued functions. Examples include the number of non-negative integer matrices (contingency tables) with prescribed row and column sums (margins), as a function of the margins and the number of integer feasible flows in a network, as a function of the excesses at the vertices. As a corollary, we obtain approximate log-concavity for the Kostant partition function of type A. We also present an indirect evidence that at least some of the considered functions might be genuinely log-concave


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno