Ir al contenido

Documat


Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights

  • Autores: Pascal Auscher, José María Martell Berrocal Árbol académico
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 212, Nº 1, 2007, págs. 225-276
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2006.10.002
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This is the first part of a series of four articles. In this work, we are interested in weighted norm estimates. We put the emphasis on two results of different nature: one is based on a good-? inequality with two parameters and the other uses Calderón¿Zygmund decomposition. These results apply well to singular ¿non-integral¿ operators and their commutators with bounded mean oscillation functions. Singular means that they are of order 0, ¿non-integral¿ that they do not have an integral representation by a kernel with size estimates, even rough, so that they may not be bounded on all Lp spaces for 1


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno