Ir al contenido

Documat


Microlocal study of topological Radon transforms and real projective duality

  • Autores: Yutaka Matsui, Kiyoshi Takeuchi
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 212, Nº 1, 2007, págs. 191-224
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2006.10.001
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Various topological properties of projective duality between real projective varieties and their duals are obtained by making use of the microlocal theory of (subanalytically) constructible sheaves developed by Kashiwara [M. Kashiwara, Index theorem for constructible sheaves, Astérisque 130 (1985) 193¿209] and Kashiwara¿Schapira [M. Kashiwara, P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss., vol. 292, Springer, Berlin¿Heidelberg¿New York, 1990]. In particular, we prove in the real setting some results similar to the ones proved by Ernström in the complex case [L. Ernström, Topological Radon transforms and the local Euler obstruction, Duke Math. J. 76 (1994) 1¿21]. For this purpose, we describe the characteristic cycles of topological Radon transforms of constructible functions in terms of curvatures of strata in real projective spaces.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno