Ir al contenido

Documat


On Cauchy¿Liouville¿Mirimanoff Polynomials

  • Autores: Pavlos Tzermias
  • Localización: Canadian mathematical bulletin, ISSN 0008-4395, Vol. 50, Nº 2, 2007, pág. 313
  • Idioma: inglés
  • DOI: 10.4153/cmb-2007-030-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let p be a prime greater than or equal to 17 and congruent to 2 modulo 3. We use results of Beukers and Helou on Cauchy¿Liouville¿Mirimanoff polynomials to show that the intersection of the Fermat curve of degree p with the line X + Y = Z in the projective plane contains no algebraic points of degree d with 3 leq d leq 11. We prove a result on the roots of these polynomials and show that, experimentally, they seem to satisfy the conditions of a mild extension of an irreducibility theorem of Pólya and Szegö. These conditions are conjecturally also necessary for irreducibility.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno