Ir al contenido

Documat


Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks

  • Autores: Thomas W. Müller, Jan Christoph Schlage-Puchta
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 213, Nº 2, 2007, págs. 919-982
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2007.01.016
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We develop a number of statistical aspects of symmetric groups (mostly dealing with the distribution of cycles in various subsets of Sn), asymptotic properties of (ordinary) characters of symmetric groups, and estimates for the multiplicities of root number functions of these groups. As main applications, we present an estimate for the subgroup growth of an arbitrary Fuchsian group, a finiteness result for the number of Fuchsian presentations of such a group (resolving a long-standing problem of Roger Lyndon), as well as a proof of a well-known conjecture of Roichman concerning the mixing time of random walks on symmetric groups.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno