Ir al contenido

Documat


Expansive algebraic actions of discrete residually finite amenable groups and their entropy

  • Autores: Christopher Deninger, Klaus Schmidt
  • Localización: Ergodic theory and dynamical systems, ISSN 0143-3857, Vol. 27, Nº 3, 2007, págs. 769-786
  • Idioma: inglés
  • DOI: 10.1017/s0143385706000939
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove an entropy formula for certain expansive actions of a countable discrete residually finite group $\Gamma$ by automorphisms of compact abelian groups in terms of Fuglede¿Kadison determinants. This extends an earlier result proved by the first author under somewhat more restrictive conditions. The main tools for this generalization are a representation of the $\Gamma$-action by means of a ¿fundamental homoclinic point¿ and the description of entropy in terms of the renormalized logarithmic growth rate of the set of $\Gamma_n$-fixed points, where $(\Gamma_n,n\ge1)$ is a decreasing sequence of finite index normal subgroups of $\Gamma$ with trivial intersection.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno