Ir al contenido

Documat


Non-periodic bifurcations of one-dimensional maps

  • Autores: Vanderlei Horita, Nivaldo Muniz, Paulo Rogério Sabini
  • Localización: Ergodic theory and dynamical systems, ISSN 0143-3857, Vol. 27, Nº 2, 2007, págs. 459-492
  • Idioma: inglés
  • DOI: 10.1017/s0143385706000496
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove that a ¿positive probability¿ subset of the boundary of ¿{uniformly expanding circle transformations}¿ consists of Kupka¿Smale maps. More precisely, we construct an open class of two-parameter families of circle maps $(f_{a,\theta})_{a,\theta}$ such that, for a positive Lebesgue measure subset of values of $a$, the family $(f_{a,\theta})_\theta$ crosses the boundary of the uniformly expanding domain at a map for which all periodic points are hyperbolic (expanding) and no critical point is pre-periodic. Furthermore, these maps admit an absolutely continuous invariant measure. We also provide information about the geometry of the boundary of the set of hyperbolic maps.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno