Ir al contenido

Documat


Conformal deformations of the smallest eigenvalue of the Ricci tensor

  • Autores: P. Guan, G. Wang
  • Localización: American journal of mathematics, ISSN 0002-9327, Vol. 129, Nº 2, 2007, págs. 499-526
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider deformations of metrics in a given conformal class such that the smallest eigenvalue of the Ricci tensor is a constant. It is related to the notion of minimal volumes in comparison geometry. Such a metric with the smallest eigenvalue of the Ricci tensor to be a constant is an extremal metric of volume in a suitable sense in the conformal class. The problem is reduced to solve a Pucci type equation with respect to the Schouten tensor. We establish a local gradient estimate for this type of conformally invariant fully nonlinear uniform elliptic equations. Combining it with the theory of fully nonlinear equations, we establish the existence of solutions for this equation


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno