Ir al contenido

Documat


Scalar curvature of minimal hypersurfaces in a sphere

  • Autores: Si-Ming Wei, Hong-Wei Xu
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 14, Nº 3, 2007, págs. 423-432
  • Idioma: inglés
  • DOI: 10.4310/mrl.2007.v14.n3.a7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We first extend the well-known scalar curvature pinching theorem due to Peng-Terng, and prove that if $M$ a closed minimal hypersurface in $S^{n+1}$ $(n=6,7)$, then there exists a positive constant $\delta(n)$ depending only on $n$ such that if $n\leq S\leq n+\delta(n)$, then $S \equiv n$, i.e., $M$ is one of the Clifford torus $S^{k}(\sqrt{\frac{k}{n}})\times S^{n-k}(\sqrt{\frac{n-k}{n}}), k=1,2,...,n-1$. Secondly, we point out a mistake in Ogiue and Sun's paper in which they claimed that they had solved the open problem proposed by Peng and Terng.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno