Ir al contenido

Documat


Bounds for Kakeya-type maximal operators associated with $k$-planes

  • Autores: Richard Oberlin
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 14, Nº 1, 2007, págs. 87-97
  • Idioma: inglés
  • DOI: 10.4310/mrl.2007.v14.n1.a7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A $(d,k)$ set is a subset of $\rea^d$ containing a translate of every $k$-dimensional plane. Bourgain showed that for $k \geq \kcrit(d)$, where $\kcrit(d)$ solves $2^{\kcrit-1}+\kcrit = d$, every $(d,k)$ set has positive Lebesgue measure. We give a short proof of this result which allows for an improved $L^p$ estimate of the corresponding maximal operator, and which demonstrates that a lower value of $\kcrit$ could be obtained if improved mixed-norm estimates for the $x$-ray transform were known.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno