Ir al contenido

Documat


On the Jacobian ideal of the binary discriminant

  • Autores: Carlos D'Andrea Árbol académico, Jaydeep V. Chipalkatti
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 58, Fasc. 2, 2007, págs. 155-180
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let  denote the discriminant of the generic binary dic.

      We show that for d  3, the Jacobian ideal of  is perfect of height 2. Moreover we describe its SL2equivariant minimal resolution and the associated differential equations satisfied by. A similar result is proved for the resultant of two forms of orders d, e whenever d  e - 1. If n denotes the locus of binary forms with total root multiplicity  d-n, then we show that the ideal of n is also perfect, and we construct a covariant which characterizes this locus. We also explain the role of the Morley form in the determinantal formula for the resultant. This relies upon a calculation which is done in the appendix by A. Abdesselam.

      Keywords: Discriminant, resultant, Morley form, transvectant, evectant, classical invariant theory, HilbertBurch theorem.

      MSC2000: 13A50, 13C40.

      155


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno