In this paper, we propose a Bayesian method for modelling count data by Poisson, binomial or negative binomial distributions. These three distributions have in common that the variance is, at most, a quadratic function of the mean. We use prior distributions on the variance function coefficients to consider simultaneously the three possible models and decide which one fits the data better. This approach sheds new light on the analysis of the Sibship data (Sokal and Rohlf, 1987). The Jeffreys-Lindley paradox is discussed through some illustrations.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados