Ir al contenido

Documat


Regularization in statistics

  • Autores: Peter J Bickel, Bo Li, Alexandre B. Tsybakov, Sara van de Geer, Bin Yu, Teófilo Valdés Sánchez Árbol académico, Carlos Rivero Rodríguez Árbol académico, Jianqing Fan, Aad van der Vaart
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 15, Nº. 2, 2006, págs. 271-344
  • Idioma: inglés
  • DOI: 10.1007/bf02607055
  • Enlaces
  • Resumen
    • This paper is a selective review of the regularization methods scattered in statistics literature. We introduce a general conceptual approach to regularization and fit most existing methods into it. We have tried to focus on the importance of regularization when dealing with today's high-dimensional objects: data and models. A wide range of examples are discussed, including nonparametric regression, boosting, covariance matrix estimation, principal component estimation, subsampling.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno