Ir al contenido

Documat


Resumen de On the Lp index of spin Dirac operators on conical manifolds

André Legrand, Sergiu Moroianu

  • We compute the index of the Dirac operator on a spin Riemannian manifold with conical singularities, acting from Lp(_+) to Lq(_-) with p, q > 1. When 1+n/p-n/q > 0 we obtain the usual Atiyah-Patodi-Singer formula, but with a spectral cut at (n + 1)/2 - n/q instead of 0 in the definition of the eta invariant. In particular we reprove Chou's formula for the L2 index. For 1+n/p-n/q _ 0 the index formula contains an extra term related to the Calderón projector.


Fundación Dialnet

Mi Documat