In this paper we consider two nonlinear elliptic problems driven by the p-Laplacian and having a nonsmooth potential (hemivariational inequalities). The first is an eigenvalue problem and we prove that if the parameter ? < ?2 = the second eigenvalue of the p-Laplacian, then there exists a nontrivial smooth solution. The second problem is resonant both near zero and near infinity for the principal eigenvalue of the p-Laplacian. For this problem we prove a multiplicity result. Our approach is variational based on the nonsmooth critical point theory.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados