Cet article est consacré à la contrôlabilité d'un système fluide¿structure bidimensionnel. Le fluide est visqueux et incompressible et son mouvement est modélisé par les équations de Navier¿Stokes tandis que la structure est une boule rigide satisfaisant les lois de Newton. Nous démontrons la contrôlabilité locale à zéro pour les vitesses du fluide et du solide rigide et la contrôlabilité exacte pour la position du solide rigide. Une partie importante de la démonstration utilise une nouvelle inégalité de Carleman pour un système linéaire auxiliaire couplant les équations de Stokes avec des équations différentielles ordinaires
This paper is devoted to the controllability of a 2D fluid¿structure system. The fluid is viscous and incompressible and its motion is modelled by the Navier¿Stokes equations whereas the structure is a rigid ball which satisfies Newton's laws. We prove the local null controllability for the velocities of the fluid and of the rigid body and the exact controllability for the position of the rigid body. An important part of the proof relies on a new Carleman inequality for an auxiliary linear system coupling the Stokes equations with some ordinary differential equations.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados