Ir al contenido

Documat


Isometric immersions into 3-dimensional homogeneous manifolds

  • Autores: Benoît Daniel
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 82, Nº 1, 2007, págs. 87-131
  • Idioma: inglés
  • DOI: 10.4171/cmh/86
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give a necessary and sufficient condition for a 2-dimensional Riemannian manifold to be locally isometrically immersed into a 3-dimensional homogeneous Riemannian manifold with a 4-dimensional isometry group. The condition is expressed in terms of the metric, the second fundamental form, and data arising from an ambient Killing field. This class of 3-manifolds includes in particular the Berger spheres, the Heisenberg group Nil3, the universal cover of the Lie group PSL2(R) and the product spaces S2×R and H2×R. We give some applications to constant mean curvature (CMC) surfaces in these manifolds; in particular we prove the existence of a generalized Lawson correspondence, i.e., a local isometric correspondence between CMC surfaces in homogeneous 3-manifolds


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno