Ir al contenido

Documat


Simplicial nonpositive curvature

  • Autores: Tadeusz Januszkiewicz, Jacek Swiatkowski
  • Localización: Publications Mathématiques de L'IHÉS, ISSN 0073-8301, Vol. 104, Nº. 1, 2006, págs. 1-85
  • Idioma: inglés
  • DOI: 10.1007/s10240-006-0038-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We introduce a family of conditions on a simplicial complex that we call local k-largeness (k=6 is an integer). They are simply stated, combinatorial and easily checkable. One of our themes is that local 6-largeness is a good analogue of the non-positive curvature: locally 6-large spaces have many properties similar to non-positively curved ones. However, local 6-largeness neither implies nor is implied by non-positive curvature of the standard metric. One can think of these results as a higher dimensional version of small cancellation theory. On the other hand, we show that k-largeness implies non-positive curvature if k is sufficiently large. We also show that locally k-large spaces exist in every dimension. We use this to answer questions raised by D. Burago, M. Gromov and I. Leary.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno