Ir al contenido

Documat


Lattices of dominions of universal algebras

  • Autores: A. I. Budkin
  • Localización: Algebra and logic, ISSN 0002-5232, Vol. 46, Nº. 1, 2007, págs. 16-27
  • Idioma: inglés
  • DOI: 10.1007/s10469-007-0002-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We fix a universal algebra A and its subalgebra H. The dominion of H in A (in a class M) is the set of all elements a ? A such that any pair of homomorphisms f, g: A ? M ? M satisfies the following: if f and g coincide on H then f(a) = g(a). In association with every quasivariety, therefore, is a dominion of H in A. Sufficient conditions are specified under which a set of dominions form a lattice. The lattice of dominions is explored for down-semidistributivity. We point out a class of algebras (including groups, rings) such that every quasivariety in this class contains an algebra whose lattice of dominions is anti-isomorphic to a lattice of subquasivarieties of that quasivariety.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno