Ir al contenido

Documat


The real cohomology of virtually nilpotent groups

  • Autores: Hannes Pouseele, Karel Dekimpe
  • Localización: Transactions of the American Mathematical Society, ISSN 0002-9947, Vol. 359, Nº 6, 2007, págs. 2539-2558
  • Idioma: inglés
  • DOI: 10.1090/s0002-9947-07-04274-2
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Abstract: In this paper we present a method to compute the real cohomology of any finitely generated virtually nilpotent group. The main ingredient in our setup consists of a polynomial crystallographic action of this group. As any finitely generated virtually nilpotent group admits such an action (which can be constructed quite easily), the approach we present applies to all these groups. Our main result is an algorithmic way of computing these cohomology spaces. As a first application, we prove a kind of Poincaré duality (also in the nontorsion free case) and we derive explicit formulas in the virtually abelian case.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno