Ir al contenido

Documat


Analysing a bicriteria clustering problem using SOM

  • Autores: David Lahoz, Fermín Mallor Giménez Árbol académico, Pedro Mateo
  • Localización: Ninth international conference Zaragoza-Pau on applied mathematics and statistics: Jaca (Spain). September 19-21, 2005 / coord. por Monique Madaune-Tort Árbol académico, 2006, ISBN 84-7733-871-X, págs. 285-292
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work we consider a clustering problem, that is, grouping a large set of elements described by a large set of non-negative variables into homogeneous categories that are not predefined. The novelty is that besides the quantitative criterion to differentiate variables, as usual, there is also a qualitative criterion, that takes into account whether or not the variables take the value zero . This problem was presented and studied by means of a certain family of parametric transformations of the data set and also by means of Multiple Factor Analysis in [1]. In our work, we consider these parametric transformations of the data set and we use Self-Organizing Maps ([4]) as clustering technique. We compare the results with those obtained in [1]. This problem came up when the managers of a big telecommunications company wanted to know about the structure of their clients¿ portfolio identifying different consumption profiles. The proposed methods have been tested on artificial data sets with similar statistical properties to those found in the real one


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno