Ir al contenido

Documat


Invariant Gaussian measures for operators on Banach spaces and linear dynamics

  • Autores: Frédéric Bayart Árbol académico, Sophie Grivaux Árbol académico
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 94, Nº 1, 2007, págs. 181-210
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give conditions for an operator $T$ on a complex separable Banach space $X$ with sufficiently many eigenvectors associated to eigenvalues of modulus $1$ to admit a non-degenerate invariant Gaussian measure with respect to which it is weak-mixing. The existence of such a measure depends on the geometry of the Banach space and on the possibility of parametrizing the $\mathbb{T}$-eigenvector fields of $T$ in a regular way. We also investigate the connection with frequent hypercyclicity.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno