Ir al contenido

Documat


Recent Advances in Predictive (Machine) Learning

  • Autores: Jerome H. Friedman
  • Localización: Journal of classification, ISSN 0176-4268, Vol. 23, Nº 2, 2006, págs. 175-197
  • Idioma: inglés
  • DOI: 10.1007/s00357-006-0012-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Prediction involves estimating the unknown value of an attribute of a system under study given the values of other measured attributes. In prediction (machine) learning the prediction rule is derived from data consisting of previously solved cases. Most methods for predictive learning were originated many years ago at the dawn of the computer age. Recently two new techniques have emerged that have revitalized the field. These are support vector machines and boosted decision trees. This paper provides an introduction to these two new methods tracing their respective ancestral roots to standard kernel methods and ordinary decision trees.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno